
Shell_shock Attack
Rafik Tarbari, William Wadsworth

Introduction:

In this lab, we are implementing the shell_shock attack. The vulnerability we are
exploring to commit this attack is found in shell defined functions in parent processes
and how they are interpreted and passed to child processes. There are two ways this
attack can be executed which are based on how the function definitions are passed to
the child processes.

vul.c

Compiling the program and executing it

Observation:
As we run the program vul (./vul), we notice that it runs with seed privilege. It does not
have root privilege.

Changing the Set-UID to root

Observation:
Since we changed vul to be a Set-UID program, it runs with root privilege.

Method 1: Export function definition into the child process

To begin this method, we have to be sure that the vulnerable bash
(bash_shellshock) is running by running the command bash_shellshock. Next, we
create an environment variable called foo, and set it to:

‘() { echo “hello world”; }; echo “extra”;’

To make sure we set the correct value, we run echo $foo. After that, in order to pass
this environment variable to the child, we export foo as the parent process. Finally, we
run bash_shellshock. Doing so promotes foo to a function as well as running the
commands that follow it, which is shown in the output.

To make sure the child process received foo as an environment variable, we run echo
$foo.

Method 2: Definition of a shell variable with special content

This method is very similar to Method 1. Before we get started, we need to make
sure that /bin/sh is linked to the vulnerable bash_shellshock:

sudo ln -sf /bin/bash_shellshock /bin/sh

/bin/sh is normally linked to /bin/bash, but we want to test the attack, which means
we need to run /bin/bash_shellshock instead of /bin/bash, hence the linking.

The main difference with this method is when exporting foo. Instead of our second
command being echo “extra”, we change it to /bin/sh to try to get a root shell
(since vul is a Set-UID program). So, we export foo as: ‘() { echo “hello
world”; }; /bin/sh’.

Normally, this should not work because bash is supposed to parse commands in
environment variables instead of running them. However, due to this exploit, that is not
the case. Running vul gets us a root shell because this vulnerable version of bash
(bash_shellshock) runs commands in environment variables instead of parsing through
them.

Summary:

In this lab, we explored the shell function definitions vulnerability to get root privilege. In
Ubuntu 16, the shell function variables were not parsed into environment variables but
instead were interpreted as functions (starting with “()”) in the child process. So, we
inserted an extra command (/bin/sh) which was run in the child process to get a root
shell since we changed the set-UID of our program vul to root.

