
Title: Cross-Site Request Forgery (CSRF) Attack
Names: Rafik Tarbari, Ryan Toal
Date: November 13, 2022

Introduction
In this lab, we are executing a cross-site request forgery (CSRF) attack on an
open-source social networking web application called Elgg. In that sense, we need a
victim user, a trusted site, and a malicious site.

Lab Environment Setup
Vulnerable Site: www.seed-server.com
Attacker Site: www.attacker32.com

Lab Tasks: Attacks
Task 1: Observing HTTP Request

Using the “HTTP Header Live” add-on to inspect HTTP Headers
Using the “http header live” add-on, we can capture HTTP GET and POST requests.
We also notice on Fig.1 the parameters username of value “alice” and password of
value “seedalice”.

Fig. 1: POST

http://www.seed-server.com
http://www.attacker32.com

Task 2: CSRF Attack Using GET Request
First thing to do is to login as samy to execute our attack (Fig. 3).

Fig. 3

After successful login into Samy’s account, we we want to try to add Alice in members
→ Alice → Add friend. Before clicking on “Add friend,” we active the “HTTP Header”
add-on for it to capture the header parameters (Fig. 4).

Fig. 4

When this is done, we can now click on “Add friend” button to capture the parameters.

The GET request we get is the following:

Fig. 5

As we can see from Fig. 5, Alice ID is 56.To figure out the ID for Samy, we can go on
inspect mode on his profile and get the guid (Fig. 6).

Fig. 6
Samy’s ID is 59.

In the attacker file, we want to edit the file “addfriend.html” to add Samy (who’s ID = 59)
to Alice’s friend. The code is the following:

Now what we want to do is to lure Alice through a phishing email or message that will
make her click on the link. Since Alice and Samy are not friends, we could use a
different medium to reach out to Alice and make her click on the link. Let’s suppose we
are able to reach out to Alice on a different platform and send her a phishing message.

On the attacker website, let’s click on “Add-Friend Attack” (Fig. 7 and Fig. 8). This will
launch the attack and automatically add Samy to Alice’s friend list (Fig. 9).

Note: Before we click on “Add-Friend Attack”, we make sure we are already
logged into Alice’s account.

Fig. 7

Fig. 8

Now let’s login to Alice’s account and check if Samy has been added to her list of
friends.

Fig. 9

Task 3: CSRF Attack using POST Request
In this attack, we will be changing Alice’s profile so that her description displays “Samy is

my hero.” The first step of this attack is editing our own profile, and grabbing the information
from the POST request.

Fig. 10

After retrieving the POST request, we will use the information to edit the attacker’s code.

Fig. 11
Then, we will log in as Alice to simulate the exploit. Samy sends Alice the malicious link,

which then changes Alice’s profile description

Fig. 12

Task 4: Enabling Elgg’s Countermeasure
- Embedding Secret Token and Timestamp to Web Pages

Using nano editor let’s comment out “return” from the file
“/var/www/elgg/vendor/elgg/elgg/engine/classes/Elgg/Security/Csrf.php”.

Fig. 13: getting to Elgg container

Fig. 14: Removing return

After this countermeasure is established, we remove the Samy and the
comment/description from Alice’s profile. Now, let’s refresh the attack page. We can see
that Samy has not been added to Alice’s profile (Fig.).

Fig. 15

Elgg’s security token is a hash value (md5 message digest) of the site secret value
(retrieved from database), timestamp (which depends on the real time of the activity

currently happening), user session ID and random generated session string (which is
not guessable). The elgg web application validates the generated token and timestamp
to defend against the CSRF attack. Every user action calls the validate function inside
Csrf.php, and this function validates the tokens. If tokens are not present or invalid, the
action will be denied and the user will be redirected.

Task 5: Experimenting with the SameSite Cookie Method

In this task, we will be observing how SameSite cookies behave when visiting
links to a valid website and a spoofed link.

Fig. 16: www.example32.com

Fig. 17a: Link A Fig. 17b: Submit (GET)

http://www.example32.com

Fig. 17c: Submit (POST)

Here, we can see that for all three links in link A: normal, lax, and strict cookies
are used (aaaaaa,bbbbbb,cccccc) respectively.

Fig. 18a: Link B Fig. 18b: Submit (GET)

Fig. 18c: Submit (POST)

Here, we can see that for link B: only normal cookies are used by all three links
with GET requests using the additional lax cookie. Strict cookies are not seen here
because they are very aggressive in choosing which sites are appropriate to send
cookies to. Lax cookies will be transferred among any domain as long as the GET
request is top-level

Conclusion

In a nutshell, we have explored the cross-request forgery attack on Elgg web application using
GET and POST requests to add Samy to Alice’s friends’ list and to add “Samy is my hero '' on
her profile description. Not only that, but we also learned how to enable the “ Embedded Secret
Token and Timestamp” and same-site cookies.

