
Title: Buffer Overflow Set-UID

Team: Rafik Tarbari & William Wadsworth

Date: October 3rd, 2022

Introduction

In this lab, we are exploring buffer-overflow vulnerability in the system. A

buffer-overflow attack is a malicious code set in a program to go above the normal

boundary of a buffer and manipulate the normal flow of this program. In recent/modern

operating systems, there are many countermeasures established to avoid/reduce

buffer-overflow attacks. In this lab, we will turn off these measures in order to be

successful with our attack.

2: Environment Setup
2.1. Turn Off Countermeasures

** Address Space Randomization
We want to disable the randomization of the starting address of the heap and stack

implemented in most Linux-based systems and Ubuntu. This will make the attack easier

in such a way that makes our guessing of the starting address more accurate.

The command to disable the randomization is the following:

** Configuring /bin/sh
Now we want to link /bin/sh to /bin/zsh which will allow us to execute our attack. We

need to do this because /bin/sh has been patched so this exploit will not work with it.

3 Task 1: Getting Familiar with the Shellcode

3.1. The C Version of the Shellcode

3.2. 32-Bit Shellcode
In the 32-bit code we are pushing //sh onto the stack instead of /sh because we need

32-bit; //sh = 32 bits (8 bits * 4) but /sh = 24 bits (8 bits * 3). Fortunately, adding an extra

“/” does not make any difference.

3.3. 64-Bit Shellcode
In the 64-bit code, the same technique is used to push the argument onto the stack

3.4. Invoking the Shellcode
The following program (call_shellcode.c) shown opens a shell prompt:

call_shellcode.c

By default, the compiler compiles programs in 64-bit. However, since we also want the

32-bit version, we can do so by adding the -m32 flag when compiling. Fortunately, we

can use a Makefile, which is also shown below. By running the command make, we can

compile both 32-bit and 64-bit versions of the program (which is specified in lines 3 and

4 of the Makefile):

Makefile

When running both a32.out and a64.out, it produces a shell prompt:

4 Task 2 & 3: Understanding and Investigating the Vulnerable Program

For these tasks, our goal is to use the program stack.c (shown below) to gain a root

shell prompt. Line 35 specifies that the input will only take a maximum length of 517

bytes. However, in the bof function (line 17), the buffer only takes BUF_SIZE bytes,

which is globally defined in line 10 as 100. This setup will cause a buffer overflow

because strcpy does not verify boundaries.

stack.c

Line 30 means we will use a file named badfile, which will contain our malicious code. It

is important that this badfile is created, otherwise the program will not run.

Compilation:
After compilation of the source code, we turn the set-UID on to give root privilege to our

program.

We can also use the Makefile to produce the same results, but here we get all the

compiled codes: 32-bits (stack-L1 and stack-L2) and 64-bits(stack-L3 and stack-L4)

Investigation

Figure 1

First, we need to set up a breakpoint before the bof function runs by typing the

command b bof. We do this because we need to set the ebp to point to a different

address, so we don’t let the full program run. Instead, we use the commands run (run

the program up until breakpoints or the end of the program) and next (execute a few

more instructions). Figure 1 shows after the run and next command are run, and we

can spot the ebp value (top of Figure 1). To confirm the value, we use the command p
$ebp. Following, we look for the address of the buffer by running the command p
&buffer.
Let’s now calculate the distance between ebp and the buffer address

ebp = 0xffffcb48 (in hex) buffer address or edx = 0xffffcadc (in hex)
ebp = 52040 (in dec) buffer address or edx = 51932 (in dec)

ebp - edx = 52040 - 51932 = 108

5.2 Launching Attack

In order to get the value of the offset, we add a reasonable value (here 4 or 8) to the

difference between ebp and edx. The value has to be large enough to kick in the NOPs

and not be too far from the return address. Also, it has to be not too big to go beyond

the return address and therefore miss to hit it.

offset = (ebp - edx) + 4 = 108 - 4 = 112

exploit.py

6 Task 4: Launching Attack Without Knowing Buffer Size (Level 2)

In this task, our goal is the same: obtain a root shell, but without knowing the length of

the buffer. Fortunately, we know the buffer length is between 100 and 200. What we can

do is assign the return address to the first 200 bytes ensuring that one of those bytes

would override the correct return address. We do this by adding a for loop, and we need

to make sure that it increments by 4, since each memory address is 4 bytes long.

After execution, we are given a root shell.

9 Task 7: Defeating dash’s Countermeasure

We are switching from the shell zsh to dash where set-UID countermeasure is

implemented and we are going to try to deploy our attack. First, we need to link /bin/sh

to /bin/dash. We need to do this because if /bin/dash detects that a program’s real user

ID is different from the effective user ID, it will drop the root privileges, meaning our

attack should not work.

But all we have to do to get around this is to add a little more shellcode that changes the

real user ID to root. Figure 2 shows the necessary shellcode (lines 6-9):

Figure 2

10 Task 8: Defeating Address Randomization

In this task, we are using the brute force attack. On a 32-bit Linux machine, the stack

base address can have possibilities. So, using a brute force to find the address will219

be a piece of cake. First, we turn on the address randomization countermeasure before

running our script.

After running the bruteforce script, we are supposed to get a root prompt but after 4 min

54 seconds, the attack is unsuccessful.

Conclusion

In this lab, we explored the buffer-overflow vulnerability. We focused on the 32-bit

program to make the attack easier to execute. Using the debugger tool, we figured the

value of ebp and the address of the buffer. We used the distance between the two to

find the offset that was used in the python exploit program which generated content to

the badfile.

