
Environment Variable and Set-UID Program Lab
William Wadsworth, Rafik Tarbari

9.12.22

Introduction

In this lab, we experiment with environment variables and see how they affect programs.
Specifically, how environment variables are shared (or not) between parent and child
processes, with privileged (Set-UID) programs and non-privileged programs alike. All
programs were compiled using gcc and output was redirected into their respective files
using i/o redirection.

2.1 Task 1: Manipulating Environment Variables

We used printenv (or env, they produce the same list) to compile a list of all
environment variables. Alternatively, to find a specific environment variable, you can do
“printenv [environment variable]” or “env | grep [environment
variable]”. The commands export and unset can be used to set or unset
environment variables.

2

2.2 Task 2: Passing Environment Variables from Parent Process to Child
Process

In this task, we determine how a child process inherits its environment variables from its
parent.

We start by compiling myprint.c (shown to
the right). In myprint.c, in the switch/case in
the main program function, case 0 is labeled the
child process, and the default case is the parent
process. We compile and run the program first
with case 0, then compile and run the program
again using the default case by uncommenting
the default case and commenting out case 0.

Lastly, we used the diff command to see the
difference between the two output files. When
doing so, diff returns nothing, signifying that
the child process inherits its environment
variables from its parent.

3

2.3 Task 3: Environment Variables and execve()

In this task, we use the execve() command to see how environment variables change,
specifically if they are inherited automatically.

To start, we compile and run myenv.c, which is shown below:

which gives us the following output:

Next, in the execve() function in line 12 we replace NULL with environ:

4

which gives us the following output:

As we passed environ to execve() which is a pointer pointing to the environment,
the child process has inherited the environment variables of the parent process.

2.4 Task 4: Environment Variables and system()

In this task, we verify that the system() function passes the environment variables of
the calling process to the new program /bin/sh.

5

The output indicates that we indeed get the environment variables.

2.5 Task 5: Environment Variables and Set-UID Programs

In this task, we explore how Set-UID programs affect environment variables.

All the environment variables PATH, LD_LIBRARY_PATH, and ANY_NAME have been
passed to the child process.

2.6 Task 6: The PATH Environment Variable and Set-UID Programs

6

To start this task, we set /home/seed to the beginning of the PATH environment
variable by entering: export PATH=/home/seed:$PATH. The program below is an
example of the system running the command in the system() function (in this case,
cat /etc/shadow), rather than the default function located in /bin/cat:

In the first figure, we change the command to output the content of the shadow file which
can only be read as root. We get an error message “Permission Denied” which means our
program is not running with root privilege

After linking /bin/zsh to /bin/sh, we are able to run our malicious program:

7

2.7 Task 7: The LD_PRELOAD Environment Variable and Set-UID
Programs

In this task, we create a dynamic link library called mylib.c:

After compiling the above program in a specific way (gcc -fPIC -g -c
mylib.c then gcc -shared -o libmylib.so.1.0.1 mylib.o -lc),
we set LD_PRELOAD=./libmylib.so.1.0.1. Next, we compile the program
below in the same directory as our dynamic link library and run it under the conditions
shown below the code:

● Regular Program, run as normal user

● Set-UID root Program, run as normal user:

● Set-UID root Program, export LD_PRELOAD in root

8

● Set-UID user1 Program, export LD_RELOAD in root

2.8 Task 8: Invoking External Programs Using system() versus
execve()

In this task, we set the following program as a Set-UID, root-owned program.

If a user without root privileges
tries to do anything with a file
that they do not have access to
(for example, any normal user
trying to access or manipulate
anything in the /etc/shadow
directory), they would be
blocked due to a lack of
permissions. However, when we
comment out system() on line
22 and uncomment line 23, the
program outputs the file specified
when running the program.

2.9 Task 9: Capability Leaking

Once we compile the program into a.out, we change its Set-UID to root and the
permission to 4755.

9

When run, it opens a shell that helps to exploit the vulnerability. Once more, we execute
the program a.out echo into /etc/zzz.

Summary

In a nutshell, we explored the vulnerabilities of environment variables. We’ve learned
how to set and unset/export environment variables from parent to child processes. We
saw the difference between the use of execve() and system() to pass environment
variables and changing the Set-UID and the permission of the program to get root
access to the system.

